Skip to main content

Mountain Flying Part 2

 

Continued from: Mountain Flying Part 1

Orographic Lifting

As the wind blows moist air upslope, it will cool, and may form clouds. If, as is often the case in winter, the air is stable, the clouds will stay close to the mountain, forming a cap cloud. However, if the air is unstable, as is usually the case in summer, this initial lifting will be enough to start convection and result in thunderstorm formation.

Microbursts

Wet microbursts are typically found in the middle of an active thunderstorm or intense rain shower, and avoiding the strong downdraft is relatively easy. Dry microbursts, however, are more insidious because they occur with little or no warning in the clear air beneath virga. Dry microbursts are common in and near the Rockies and other mountainous areas of the western United States in the summer. Dry microbursts are likely when thunderstorms with bases above about 3,000- to 5,000-feet above ground level (AGL ) exist and the temperature/dew point spread on the surface is more than about 40 degrees Fahrenheit. A good indicator of a dry microburst is when you see dust blowing underneath the thunderstorm. Staying clear until the event passes (usually a few minutes) is recommended.

Density Altitude

Density altitude is pressure altitude corrected for temperature. Higher density altitude reduces overall performance of the airplane. At higher density altitudes, takeoff and landing distances are increased, thrust is decreased, rate of climb and actual service ceiling are decreased, true airspeed (TAS) is higher for a given indicated airspeed (IAS), and turning radius is larger for a given IAS (due to higher TAS). To help regain performance at high-density altitudes, consider reducing aircraft weight (retardant and/or fuel load). Check your aircraft flight manual (AFM) performance data charts for takeoff and landing distances, climb rates, etc. Since your TAS is higher for a given IAS, many pilots respond to the visual cues of higher ground speed on takeoff by rotating at a lower IAS than normal. Rotating at too slow an airspeed may cause the airplane to take an even longer ground run than necessary. Turning radius is proportional to the square of TAS. For example, if you increase your TAS by only 10%, your turn radius will increase by 20%. In the fire pattern this may result in an overshooting turn to final with the resultant last-minute corrections (rushed approach, etc.). If in doubt, go around. Higher density altitudes also affect best rate and angle of climb airspeeds. Refer to your AFM to be sure you are flying the correct airspeeds to get the performance you expect. Be extra cautious about slowing down at high-density altitudes. Throttle response will be delayed (due to less dense air) and thrust is reduced due to less air over the prop blades. Stalls at high-density altitudes and close to the ground can be devastating with insufficient time or performance response to recover.

Ridge and Pass Crossing

A good technique is to cross ridges or passes at the ridge elevation plus at least 1,000-feet AGL. If the winds at mountain top level are above 20 knots, increase to 2,000-feet AGL. Plan to be at that altitude at least three miles before reaching the ridge and stay at that altitude until at least three miles past it. This clearance zone will give you a reasonable safety zone to avoid the most severe turbulence and downdrafts in windy conditions and/or the ability to turn the aircraft around in a descending turn if necessary. If conditions or airplane performance dictate, you may need to fly along the windward side of a ridge to find updrafts for gaining altitude before crossing a ridge. You may also need to circle before reaching the ridge if climbing out of a valley airport. Move across ridges at a 45° angle. This allows you to turn away from the ridge quicker if you encounter a severe downdraft or turbulence. Once you have crossed the ridge, turn away from it at a 90° angle to get away from the most likely area of turbulence quickly. Plan your crossing to give yourself the ability to turn and descend toward lower terrain quickly if necessary.

Rough Terrain

Heads up near or above abrupt changes of terrain such as cliffs or rugged areas. Dangerous turbulence can be expected, especially with high winds.

Box Canyons

Try to avoid flying up the middle of a canyon. It is better to fly along one side or the other (preferably the downwind side) at sufficient altitude to be in a better position to execute a 180-degree turn. Allowing sufficient altitude for a descending 180-degree turn along with a turn into the wind (if possible) decreases actual turn radius across the ground. Use extra caution when mountain tops are obscured. Many accidents occur as a result of pilots turning up the wrong drainage, ending in a box canyon. Monitor GPS closely.

 

 

Last Modified / Reviewed:

Have an idea or feedback?

Share it with the NWCG 6MFS Subcommittee.


Follow NWCG on Twitter and Facebook

NWCG Latest Announcements

The Incident Position Standards and Next Generation Position Task Book are now available for Status/Check-In Recorder (SCKN)

Date: August 27, 2024
Contact: Incident Planning Subcommittee 

NWCG is excited to announce that the NWCG Incident Position Standards for Status/Check-In Recorder, PMS 350-32, NWCG Position Task Book for Status/Check-In Recorder (SCKN), PMS 311-32, and Checking In Resources Customer Service Job Aid, J-111 are now available.

The Performance Support Package, which for SCKN includes the Incident Position Standards, Next Generation Position Task Book, and job aid were developed through the Incident Performance and Training Modernization (IPTM) effort. The Performance Support Package will support trainees, those qualified in the position, and evaluators.

References:

NWCG Status/Check-In Recorder Position Page

NWCG Incident Position Standards for Status/Check-In Recorder, PMS 350-32

NWCG Position Task Book for Status/Check-In Recorder (SCKN), PMS 311-32

Checking In Resources Customer Service Job Aid, J-111

The Next Generation Position Task Book and Incident Position Standards are now available for Safety Officer, Field (SOFF)

Date: July 26, 2024
Contact: Risk Management Committee 

NWCG is excited to announce that the NWCG Incident Position Standards for Safety Officer, Field, PMS 350-81 and NWCG Position Task Book for Safety Officer, Field (SOFF), PMS 311-81 are now available.

The Safety Officer, Field (SOFF) is responsible for monitoring operations on an incident from a risk management perspective to provide for the welfare of incident resources and the public. The new Incident Position Standards and Next Generation Position Task Book are developed through the Incident Performance and Training Modernization (IPTM) effort.

References:

NWCG Safety Officer, Field (SOFF) Position

NWCG Incident Position Standards for Safety Officer, Field, PMS 350-81

NWCG Position Task Book for Safety Officer, Field (SOFF), PMS 311-81

Updated NWCG Standards for Electronic Documentation (eDoc), PMS 277

Date: July 25, 2024
Contact: Incident Planning Subcommittee 

The Incident Planning Subcommittee has updated the NWCG Standards for Electronic Documentation (eDoc), PMS 277.

The NWCG Standards for Electronic Documentation (eDoc) establishes the standards for collection and retention of records on wildland fires. This July 2024 update will provide incident management teams the most current standards required to maintain incident records and submit them to host units at the close of an incident.

References:

NWCG Standards for Electronic Documentation (eDoc), PMS 277

eDoc Box Directory (zip file)

NWCG Off-Highway Vehicle Typing Standard Request for Comment

Date: July 24, 2024
Contact: Mobile Fire Equipment Subcommittee 

The Mobile Fire Equipment Subcommittee has released Equipment Bulletin 24-002 NWCG Off-Highway Vehicle (OHV) Typing Standard - Request for Comment. This bulletin outlines the proposed NWCG OHV typing standard, as well as the business need for establishing the standard. Comments on the proposed standard will be accepted through August 15th using the comment form linked below.

References:

ETC-EB-2024-02: NWCG Off-Highway Vehicle (OHV) Typing Standard - Request for Comment

NWCG Off-Highway Vehicle (OHV) Typing Standard Comment Form